Leistungstests von analytischen Abfragen in PostgreSQL, ClickHouse und clickhousedb_fdw (PostgreSQL)

In dieser Studie wollte ich sehen, welche Leistungsverbesserungen mit einer ClickHouse-Datenquelle anstelle von PostgreSQL erzielt werden können. Ich weiß, welche Leistungsvorteile ich mit ClickHouse erhalte. Bleiben diese Vorteile bestehen, wenn ich über PostgreSQL mit einem externen Daten-Wrapper (FDW) auf ClickHouse zugreife?



Die untersuchten Datenbankumgebungen sind PostgreSQL v11, clickhousedb_fdw und ClickHouse. Letztendlich werden wir ab PostgreSQL v11 verschiedene SQL-Abfragen ausführen, die über unser clickhousedb_fdw an die ClickHouse-Datenbank weitergeleitet werden. Wir werden dann sehen, wie die Leistung von FDW mit den gleichen Abfragen verglichen wird, die in nativem PostgreSQL und nativem ClickHouse ausgeführt werden.



Clickhouse-Datenbank



ClickHouse ist ein spaltenbasiertes Open-Source-Datenbankverwaltungssystem, das eine 100-1000-mal schnellere Leistung als herkömmliche Datenbankansätze erzielt und in weniger als einer Sekunde über eine Milliarde Zeilen verarbeiten kann.



Clickhousedb_fdw



clickhousedb_fdw - ClickHouse External Database Wrapper (FDW) ist ein Open Source-Projekt von Percona. Hier ist ein Link zum GitHub-Repository des Projekts .



Im März habe ich einen Blog geschrieben, der Ihnen mehr über unsere FDW erzählt .



Wie Sie sehen werden, bietet dies FDW für ClickHouse, mit dem SELECT from und INSERT INTO, eine ClickHouse-Datenbank vom PostgreSQL v11-Server, ermöglicht werden.



FDW , aggregate join. .



Benchmark environment



  • Supermicro server:

    • Intel® Xeon® CPU E5-2683 v3 @ 2.00GHz
    • 2 sockets / 28 cores / 56 threads
    • Memory: 256GB of RAM
    • Storage: Samsung SM863 1.9TB Enterprise SSD
    • Filesystem: ext4/xfs
  • OS: Linux smblade01 4.15.0-42-generic #45~16.04.1-Ubuntu
  • PostgreSQL: version 11


Benchmark tests



, - , , , « , » 1987 2018 . , .



85 , 109 .



Benchmark Queries



, ClickHouse, clickhousedb_fdw PostgreSQL.



Q# Query Contains Aggregates and Group By
Q1 SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC;
Q2 SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC;
Q3 SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10;
Q4 SELECT Carrier, count() FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count() DESC;
Q5 SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year=2007 GROUP BY Carrier ) a INNER JOIN ( SELECT Carrier,count(*) AS c2 FROM ontime WHERE Year=2007 GROUP BY Carrier)b on a.Carrier=b.Carrier ORDER BY c3 DESC;
Q6 SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Carrier) a INNER JOIN ( SELECT Carrier, count(*) AS c2 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier ) b on a.Carrier=b.Carrier ORDER BY c3 DESC;
Q7 SELECT Carrier, avg(DepDelay) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier;
Q8 SELECT Year, avg(DepDelay) FROM ontime GROUP BY Year;
Q9 select Year, count(*) as c1 from ontime group by Year;
Q10 SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month) a;
Q11 select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month) a;
Q12 SELECT OriginCityName, DestCityName, count(*) AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10;
Q13 SELECT OriginCityName, count(*) AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10;
Query Contains Joins
Q14 SELECT a.Year, c1/c2 FROM ( select Year, count()1000 as c1 from ontime WHERE DepDelay>10 GROUP BY Year) a INNER JOIN (select Year, count(*) as c2 from ontime GROUP BY Year ) b on a.Year=b.Year ORDER BY a.Year;
Q15 SELECT a.”Year”, c1/c2 FROM ( select “Year”, count()1000 as c1 FROM fontime WHERE “DepDelay”>10 GROUP BY “Year”) a INNER JOIN (select “Year”, count(*) as c2 FROM fontime GROUP BY “Year” ) b on a.”Year”=b.”Year”;


Table-1: Queries used in benchmark



Query executions



: PostgreSQL , ClickHouse clickhousedb_fdw. .



Q# PostgreSQL PostgreSQL (Indexed) ClickHouse clickhousedb_fdw
Q1 27920 19634 23 57
Q2 35124 17301 50 80
Q3 34046 15618 67 115
Q4 31632 7667 25 37
Q5 47220 8976 27 60
Q6 58233 24368 55 153
Q7 30566 13256 52 91
Q8 38309 60511 112 179
Q9 20674 37979 31 81
Q10 34990 20102 56 148
Q11 30489 51658 37 155
Q12 39357 33742 186 1333
Q13 29912 30709 101 384
Q14 54126 39913 124 1364212
Q15 97258 30211 245 259


Table-1: Time taken to execute the queries used in benchmark





, X , Y . ClickHouse , postgres clickhousedb_fdw, . , PostgreSQL ClickHouse, ClickHouse clickhousedb_fdw.





ClickhouseDB clickhousedb_fdw. FDW , Q12. ORDER BY. - ORDER BY GROUP/BY ORDER BY ClickHouse.



2 Q12 Q13. , ORDER BY. , Q-14 Q-15 ORDER BY . ORDER BY 259 , ORDER BY — 1364212. , .



Q15: Without ORDER BY Clause



bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2 
     FROM (SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
     INNER JOIN(SELECT "Year", count(*) AS c2 FROM fontime GROUP BY "Year") b ON a."Year"=b."Year";


Q15: Query Without ORDER BY Clause



QUERY PLAN                                                      
Hash Join  (cost=2250.00..128516.06 rows=50000000 width=12)  
Output: fontime."Year", (((count(*) * 1000)) / b.c2)  
Inner Unique: true   Hash Cond: (fontime."Year" = b."Year")  
->  Foreign Scan  (cost=1.00..-1.00 rows=100000 width=12)        
Output: fontime."Year", ((count(*) * 1000))        
Relations: Aggregate on (fontime)        
Remote SQL: SELECT "Year", (count(*) * 1000) FROM "default".ontime WHERE (("DepDelay" > 10)) GROUP BY "Year"  
->  Hash  (cost=999.00..999.00 rows=100000 width=12)        
Output: b.c2, b."Year"        
->  Subquery Scan on b  (cost=1.00..999.00 rows=100000 width=12)              
Output: b.c2, b."Year"              
->  Foreign Scan  (cost=1.00..-1.00 rows=100000 width=12)                    
Output: fontime_1."Year", (count(*))                    
Relations: Aggregate on (fontime)                    
Remote SQL: SELECT "Year", count(*) FROM "default".ontime GROUP BY "Year"(16 rows)


Q14: Query With ORDER BY Clause



bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2 FROM(SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a 
     INNER JOIN(SELECT "Year", count(*) as c2 FROM fontime GROUP BY "Year") b  ON a."Year"= b."Year" 
     ORDER BY a."Year";


Q14: Query Plan with ORDER BY Clause



QUERY PLAN 
Merge Join  (cost=2.00..628498.02 rows=50000000 width=12)   
Output: fontime."Year", (((count(*) * 1000)) / (count(*)))   
Inner Unique: true   Merge Cond: (fontime."Year" = fontime_1."Year")   
->  GroupAggregate  (cost=1.00..499.01 rows=1 width=12)        
Output: fontime."Year", (count(*) * 1000)         
Group Key: fontime."Year"         
->  Foreign Scan on public.fontime  (cost=1.00..-1.00 rows=100000 width=4)               
Remote SQL: SELECT "Year" FROM "default".ontime WHERE (("DepDelay" > 10)) 
            ORDER BY "Year" ASC   
->  GroupAggregate  (cost=1.00..499.01 rows=1 width=12)         
Output: fontime_1."Year", count(*)         Group Key: fontime_1."Year"         
->  Foreign Scan on public.fontime fontime_1  (cost=1.00..-1.00 rows=100000 width=4) 
              
Remote SQL: SELECT "Year" FROM "default".ontime ORDER BY "Year" ASC(16 rows)




, ClickHouse , clickhousedb_fdw ClickHouse PostgreSQL. clickhousedb_fdw , , ClickHouse. , fdw PostgreSQL .



Clickhouse https://t.me/clickhouse_ru

PostgreSQL https://t.me/pgsql




All Articles